
Tips
& Tricks

Memory Mapped Files

A lot of work by programmers is concerned with the
handling of files. Sometimes you only read files,

sometimes you write back to them. You will either use
the file or text types, or perhaps a simple stream like
TFileStream. You will always need to position the file
pointer before you read or write.

In Win32 there is an API for memory mapped files.
Now you can open a file and access its contents just as
if they were all in memory. Technically, this is done
with the Virtual Memory Manager (VMM). Access via a
normal memory pointer has several advantages
against normal file access routines.

As an example let me demonstrate the use of a mem-
ory mapped file for a patch program. The patch pro-
gram needs to find a specifc position in a file, read the
contents, fix it and write it back to the file. The file can
be large: for example a Delphi .EXE file. First, let me
introduce a method for searching for a string in a huge
buffer: the Boyer Moore method. It searches very fast
if it can access memory directly. See the code in Listing
1. Now let us assume that you have defined the follow-
ing constant in the application whose .EXE file you want
to patch:

type
 PPatch = ^TPatch;
 TPatch = packed record
 Id : String[9];
 Serial : Longint;
 end;
const
 MyPatch : TPatch =
 (Id : ’*MyPatch*’; Serial : 0);

So, we want to look for the string *MyPatch* in a file and
patch the serial number code to, say, 4711. To have
easy access to the memory-mapped file I use a descen-
dant of TFileStream with the new Memory:Pointer
property. See the code in Listing 2. As you can see it
creates a read only or read/write file mapping depend-
ing on the Mode parameter. The destructor releases the
previous file mapping.

Our patching code is now very simple, using the new
stream type together with the Boyer Moore search. The
code opens the memory mapped file stream and then
calls the string search on the memory pointer. If the
search is successful it does some pointer arithmetic to
obtain the position in the file. The -1 is neccessary
because the search does not work with the length byte

{ Boyer Moore string search on a buffer }
function PosBM(const P: String; const Buffer;
 Count: Longint): Longint;
var
 i,j : Cardinal;
 m,n : Cardinal;
 Skip : array[Char] of Integer;
 procedure InitSkip;
 var
 Ch: Char;
 i: Integer;
 begin
 for Ch := Low(Char) to High(Char) do Skip[Ch] := M;
 for i := 1 to M do Skip[P[i]] := M-i;
 end;
 function A(Index: Cardinal): Char;
 begin
 Result := Chr(TByteArray(Buffer)[Index-1]);
 end;
begin
 Result := 0;
 if (Count=0) or (P=’’) then exit;
 M := Length(P);
 N := Count;
 i := M; j := M;
 InitSkip;
 repeat
 if (A(i)=P[j]) then begin
 Dec(i);
 Dec(j);
 end else begin
 if M-j+1 > Skip[A(i)] then
 i := i+M-j+1
 else
 i := i+Skip[A(i)];
 j := M;
 end;
 until (j<1) or (i>N);
 if i>N then
 Result := -1
 else
 Result := i;
end;

➤ Listing 1

{ Stream for memory-mapped files }
type
 TMemoryFileStream = class(TFileStream)
 private
 FFileMapping : THandle;
 FFileBase : Pointer;
 public
 constructor Create(const FileName: String;
 Mode: Word);
 destructor Destroy; override;
 property Memory: Pointer read FFileBase;
 end;
constructor TMemoryFileStream.Create(
 const FileName: String; Mode: Word);
var
 aFlag : Integer;
begin
 inherited Create(FileName, Mode);
 if (Mode and fmOpenReadWrite) <> 0 then
 aFlag := PAGE_READWRITE
 else
 aFlag := PAGE_READONLY;
 FFileMapping :=
 CreateFileMapping(Handle, nil, aFlag, 0, 0, nil);
 if FFileMapping = 0 then
 raise Exception.Create(
 ’CreateFileMapping failed’);
 if (Mode and fmOpenReadWrite) <> 0 then
 aFlag := FILE_MAP_WRITE
 else
 aFlag := FILE_MAP_READ;
 FFileBase :=
 MapViewOfFile(FFileMapping, aFlag, 0, 0, 0);
 if FFileBase = nil then
 raise Exception.Create(’MapViewOfFile failed’);
end;
destructor TMemoryFileStream.Destroy;
begin
 if FFileBase <> nil then
 UnmapViewOfFile(FFileBase);
 if FFileMapping <> 0 then
 CloseHandle(FFileMapping);
 inherited Destroy;
end;

➤ Listing 2

December 1996 The Delphi Magazine 57

of the string but the length byte is included in the TPatch
record! Writing the new data into the file is simple. See
Listing 3.

Think about what you have to do without using a
memory mapped file: you have either to copy the file
data into a memory block or you have to re-write the
search so it works especially on a file or stream. Both
methods make for more coding work and I think the
performance of memory mapped files is great.

Contributed by Stefan Boether (author of XTools) of
Fabula Software, Germany, email stefc@fabula.com

Smart Drag And Drop
I find the drag and drop options in Windows 95 really
nice – it’s easier than opening a file from dialog. Unfor-
tunately, not all applications support it. To implement
drag and drop in your application you must do the
following:
➣ Allow a window handle to accept drag messages,
➣ Respond to the WM_DROPFILES message,
➣ Release the received drop handle.
In the form’s OnCreate handler you must call the API
function DragAcceptFiles(Handle, True) with the win-
dow handle that needs to accept the dragged files.
Than you can catch the message WM_DROPFILES and after
this free the handle with a call to DragFinish(FDrop).

But here’s some extra tricks to make it a lot easier.
Everything is done in a component, which also con-
verts the Windows WM_DROPFILES message to a Delphi
compliant DragDrop event. So you can use the normal
OnDragDrop event which is defined by each control. The
component is called TxFileDrop.

The first problem is how to catch the WM_DROPFILES
the form, and not my non-visual component, receives.
I solve this with a hook to the Windows procedure of
the component owner that must be the TForm in which
I place it. This is done with the call:

FOldWndProc := TFarProc(SetWindowLong(
 Handle, GWL_WNDPROC,
 Longint(MakeObjectInstance(FormWndProc))));

Now I can get all the windows messages for the form
first, but all the messages I not interested in I must send
to the previous message handler. The two methods
shown in Listing 4 do this. DefaultProc calls the old
handler we saved in FOldWndProc. FormWndProc handles
the WM_DROPFILES messages and calls wmDropFiles for it.

But such tricky hooks must be removed otherwise
the system can be crashed. To do this I install a second
daisy chain mechanism on the OnDestroy event of the
owner form:

FNextDestroy := OnDestroy;
OnDestroy := FormDestroy;

In this case before the form is destroyed the following
method is called. I can’t handle it in the destructor
because the window handle of the owner form must be
valid. After switching the windows handler back to the

prior call the next destroy event is called if assigned:

procedure TxDropFile.FormDestroy(Sender:TObject);
begin
 with TForm(Owner) do
 FreeObjectInstance(Pointer(SetWindowLong(
 Handle, GWL_WNDPROC, Longint(FOldWndProc))));
 if Assigned(FNextDestroy) then
 FNextDestroy(Sender);
end;

Now the framework for our component is ready. We can
move on to handle the drop event and the calling of
wmDropFiles. First we need to access the handle for the
drop. It’s stored in the wParam of the message. Also we
need the point on which the drag occurs. This client
form related point we convert to screen coordinates for
later use:

FDrop := Msg.wParam;
DragQueryPoint(FDrop,aPoint);
aPoint := TForm(Owner).ClientToScreen(aPoint);

After this we look to see how many files are dropped
and step through the list, inserting the full pathname
of each file into our file list (which is a stringlist to make
Delphi access easy):

FFiles.Clear;
aFiles := DragQueryFile(FDrop, $FFFFFFFF, Nil, 0);
for i := 0 to aFiles-1 do begin
 aLen := DragQueryFile(Msg.wParam, i,nil,0);
 DragQueryFile(Msg.wParam, i, aFilename, aLen+1);
 FFiles.Add(StrPas(aFileName));
end;

procedure PatchExe(const aFile: String; aSerial: Longint);
var
 aPos : Longint;
 aStream : TMemoryFileStream;
begin
 aStream :=
 TMemoryFileStream.Create(aFile, fmOpenReadWrite);
 try
 aPos :=
 PosBM(’*MyPatch*’,aStream.Memory^, aStream.Size);
 if aPos <> - 1 then
 { - 1 for Length byte ! }
 PPatch(PChar(aStream.Memory)+aPos-1)^.Serial :=
 aSerial;
 finally
 aStream.Free;
 end;
end;

➤ Listing 3

procedure TxDropFile.DefaultProc(
 var Message:TMessage);
begin
 with Message do
 Result := CallWindowProc(FOldWndProc,
 TForm(Owner).Handle, Msg, wParam, lParam);
end;
procedure TxDropFile.FormWndProc(var Message:TMessage);
begin
 if Message.Msg = WM_DROPFILES then wmDropFiles(Message)
 else DefaultProc(Message);
end;

➤ Listing 4

58 The Delphi Magazine Issue 16

Now the best trick of the component cames: we convert
the Windows event to a real Delphi DragDrop operation.
First we must find the control that is at the given
coordinate. Delphi gives us the method FindDragTarget
which acts on screen coordinates – this is the reason
why we previously converted the client coordinates to
screen coordinates. If we find such a control we convert
the point again to the coordinate space of the control
and call the DragDrop method of the control with our
component as the sender and the given point:

aControl := FindDragTarget(aPoint,False);
if Assigned(aControl) then begin
 aPoint := aControl.ScreenToClient(aPoint);
 aControl.DragDrop(Self,aPoint.X,aPoint.Y);
end;

All you now must do to receive such a drop operation
is to react to the OnDragDrop event and look to see

if Source is TxFileDrop

For example, we can drop a file list into a memo with
the following code:

procedure TForm1.Memo1DragDrop(
 Sender, Source: TObject; X, Y: Integer);
begin
 if Source is TxDropFile then
 Memo1.Lines := xDropFile1.Files;
end;

Isn’t this easy? Just place the new component on your
form and then use normal Delphi events.

Contributed by Stefan Boether (author of XTools) of
Fabula Software, Germany, email stefc@fabula.com

Listbox Keyboard Miscellanea
It is usually a good idea to strive to make sure that any
action which can be done by mouse can also be done
with the keyboard. It’s a given fact that drag and drop
can’t easily be mimicked, but the result of the drag and
drop operation should be achievable through
keystrokes alone.

Anyway, the point I’m getting around to is that
non-contiquous listbox entry selection is performed by
clicking on the first item and Ctrl+clicking on
subsequent items. How do we do the same with the
keyboard alone? Listboxes have always supported it,
but for some reason the keystrokes weren’t well
advertised.

The answer is to press Shift+F8 (not particularly
intuitive) which starts the highlight marker flashing.
The arrow keys can then move it up and down and the
Space bar toggles that item as selected and unselected.
Another Shift+F8 gets out of this mode.

Of course, contiguous selection is not a problem in a
listbox: Shift plus the arrow keys do that. Selecting the
entire contents of a listbox can be done by Home,
Shift+End, or End, Shift+Home, but a quicker (and lesser

known) way is Ctrl+/, where Ctrl+\ un-selects all but
the active item.

In a Windows 95 or Windows NT list view, most of
these key strokes are changed. Ctrl+A selects all and
discontiguous selections are easier. Hold the Ctrl key
down, move around with the arrow keys and press
Space to select an item.

Contributed by Brian Long

Creating A Wave File
Delphi’s TMediaPlayer is a nice and powerful tool for
handling many multimedia tasks. However, it does
have a few quirks. One of them is that TMediaPlayer can
only open a WAV file that has at least one byte of data
in it. If you want to use TMediaPlayer to record a brand
new, empty, wave file you cannot merely set the
Filename property and start recording. TMediaPlayer
expects Filename to address a valid WAV file that has
some data in it already. Merely creating an empty file
with a TWaveHeader in it won’t do the trick either.

The code in Listing 5 creates a WAV file with a single
byte of data at the beginning. It uses calls to the

unit Makewave;

interface

function CreateNewWave(NewFileName: String): Boolean;

implementation

uses
 MMSystem, SysUtils, Windows;

function CreateNewWave(NewFileName: String): Boolean;
var
 DeviceID: Word;
 MciOpen: TMCI_OPEN_PARMS;
 MciRecord: TMCI_RECORD_PARMS;
 MciSave: TMCI_SAVEPARMS;
 MCIResult: LongInt;
 Flags: Word;
 TempFileName: array[0..MAX_PATH] of Char;
begin
 Result := True;
 { If anything fails along the way,
 it will turn False }
 StrPCopy(TempFileName, NewFileName);
 { Open the Device }
 MciOpen.lpstrDeviceType := ’waveaudio’;
 MciOpen.lpstrElementName := ’’;
 Flags := MCI_OPEN_ELEMENT or MCI_OPEN_TYPE;
 MCIResult := MciSendCommand(0, MCI_OPEN, Flags,
 LongInt(@MciOpen));
 Result := Result and (MCIResult = 0);
 DeviceID := MciOpen.wDeviceId;
 { Record only one byte of data }
 MciRecord.dwTo := 1;
 Flags := MCI_TO or MCI_WAIT;
 MCIResult := MciSendCommand(DeviceID, MCI_RECORD,
 Flags, LongInt(@MciRecord));
 Result := Result and (MCIResult = 0);
 { Save the file }
 mciSave.lpfileName := TempFilename;
 Flags := MCI_SAVE_FILE or MCI_WAIT;
 MCIResult := MciSendCommand(DeviceID, MCI_SAVE,
 Flags, LongInt(@MciSave));
 Result := Result and (MCIResult = 0);
 { Return True if device can be successfully closed }
 MCIResult := MciSendCommand(DeviceID, MCI_CLOSE,
 0, LongInt(nil));
 Result := Result and (MCIResult = 0);
end;

end.

➤ Listing 5

60 The Delphi Magazine Issue 16

MMSYSTEM unit, specifically the MCISendCommand function.
There are four steps involved. First, the wave audio
device is opened. Then, the device is told to record a
single bit of information. It will, technically, place one
millisecond of input from your microphone into the
wave, so watch what you say! Then the wave is saved
with the given file name.

Finally, the device is closed. Along the way, any
failure in the MCISendCommand calls will cause the Result
of the function to be set to False.

The pattern for the four steps is relatively straight-
forward. First, the basic structures (the TMCI_*_Params
structures) are filled out with the appropriate informa-
tion. The Flags parameter is set and then the call to
MCISendCommand is made, passing the Params structure as
a LongInt created by casting the address of the
structure.

There are a few extra things to note. The TMediaPlayer
must be closed before the function is called, as this
function makes direct calls to the wave audio device
itself. You can re-open it after the WAV file has been
created and its Filename property is set to the name of
the new file.

The file name passed to CreateNewWave in the parame-
ter NewFileName must contain complete path informa-
tion or else the default directory will be used.

CreateNewWave does no error reporting. It will return
False if any error occurs in the calls to MCISendCommand.

There are a whole slew of error code values that can be
returned by MCISendCommand. They can be found in the
MMSYSTEM.HLP file in the DELPHI\BIN directory. In
addition, it will also return False if you try to create a
WAV file that already exists.

Contributed by Nick Hodges, CompuServe 72662,2307

Thanks for all your Tips,
keep them coming in!

If you have any hints that
you think will be of use to
fellow Delphi developers,

just drop them in an
email to the Editor at

70630.717@compuserve.com

62 The Delphi Magazine Issue 16

	Memory Mapped Files
	Smart Drag And Drop
	Listbox Keyboard Miscellanea
	Creating A Wave File

